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Recurrent Neural Network

“straw” “hat”
l ';—'e i

A

‘man in black shirt is playing “construction worker in orange "two young girls are playing with "boy is doing backflip on
guitar.” safety vest is working on road.” lego toy." wakeboard.”

START “Straw" “hat"

Convolutional Neural Network

5 e ———SRSN S
‘a young boy is holding a ‘a catis sittingon a couchwitha  "awoman holding a teddy bearin ~ "a horse is standing in the middle
baseball bat.” remote control.” front of a mirror." of aroad.”



ATHESER

EFAR




| JAMA:AS TR RIBEBR SRR £ CRAB RS IS TS
MRS ST

(FERRESIHHLNEZINE NBIESZEME [A] EyePACS-1: AUC, 99.1%; 95% CI, 98.8%-99.3%
(AR RN, R 126175 P——
KBNS AOAIR T T I, PRy 7
B—KEGEPFT R IERBEIEM M IRREE. 8 100-
@ﬁ'ﬁﬁﬁﬁﬁﬂ**ﬂ@i%g&ﬁ?‘}T 3 EU 7 507 t High-sensitivity operating point
RiG. PrERIBNEAERMmANBEEHRIAIRY | s
BURSHT TIRNE, HeRAOS ST I 7 e
SEMITER— 7 % 8 ANEEIMER
RHEE AR A S EA BRI, : )
A. HEALTHY B. DISEASED R " 8-

| ““~Hemorrhages = ;5 4':

% | . ‘ ?ﬂ:‘:ﬂ é ll[] 1I5 zlﬂ IIE 3I[]

1 - Specificity, %



Basal cell carcinomas ® Epidermal benign
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Early brain development in infants at high risk for

autism spectrum disorder

Heather Cody Hazlert', Honghin Gu', Erent €. Munsell, Sun Hyung Kim!, Martin Styner!, Jason 1L Wolff*, Jed T. Elison®,
Meghan B. Swanson?, Hongru Zhut, Kelly N. Botteron?, D. Louis Collins!?, John N. Constanting’, Stephen R, Dager®.®,
Annette M_Estes™, Alan C. Evans”, Viadimir 5. ann\J' Guido Gerlg” Penelope Knslo?nulm" Robert C. \lc[-(ln.-.(rg,“.

Juhi Pandey™, Sarah Paterson'®, John R. Pruett I, Robert T. Schultz**, Dennis W. Shaw®

Jomeph Piven® & the [BIS Network®*

Brain enlargement has been observed in children with sutism
spectrum disorder (ASD), bat the timing of this ph and

", Lonnie Zwalgenbaum®,

(see Methods for diagnostic and exclusion criteria). The three groups

the relationship between ASD and the appearance of behavioural

parable in (mean) racefethnicity (85% white), family income,
lua!u'ua] age nbmh (33 years ald), infant birth weight (8 Ib), 2nd gesta-

are head ci and
longitudinal brain valume studies of two-year olds followed up
at four years of age have provided evidence that increased brain
volume may emerge early in development2. Studies of infants
at high familial risk of autism can provide insight into the early
development of autism and have shown that characteristic social
Mmumaﬂ)mwdmlhgmu.pmn(lhfml and in the
second year of life™®. These observations suggest that prospective
brain-imaging studies of infants at high familial risk af ASD might
identify early postnatal changes in brain volume that occur before

d age at birth {39 weeks). The HR-ASD group had more males than
the other two groups (83% of the HR- ASD group was male compared to
59% and 57% of the LR and HR respectively) and motk
in the LR group had s higher education level (Extended Data Table 1).
Infants were evaluated at 6, 12 and 7.1 mumhs uhg: which induded
detailed behavioural
nance imaging (MRL) of the brain, to prospectively investigate brain
and behavioural trajectories dusing infancy. The analyses described
below were conducted on a subset 0f 106 high-risk (n= 15 HR-ASD);
n=%91 HR-neg) and 42 low-risk infants for whom all three MR scans
were succesafully sbtained. On the basis of ous previous findings at
2~ years ol age’, we hypothesized that brain overgrowth in ASD begins
before 24 munlhs of aﬁ: that overgrowth is associated with hyper-

magnetic res-

an ASD diag In P ing study of
106 infants at high familial risk of ASD and 42 loworisk infants,
we show that b i ucflhr:nn 1] anubclmn
i 12 mnnthi ol e g

between 12 and 24 months in 15 high-risk |nhnls who were
diagnosed with autism at 24 months. Brain volume overgrowth
was linked to the emergence and severity of antistic social deficits.
A deep l::rmnl -Ir,m-ulhm that primarily uses surface area

from imaging of the brain of
6-12-month-old individuals predicied the diagnosis of antism
in individual high-risk children ai 24 months (with a positive
predictive value of 81% and a sensitivity of §8%). These findings
demunstrate that early brain changes oceur during the period in
which autisti sours are first

suirface area; and that these early brain changes
are temporall un]szr.l tos the emergence of the defining bebaviours of
ASD. We also i igated whether difi i the develop off
brain characteristics might suggest early biomarkers (that is, ocourring
h;ﬁ:r: the onset of the defining behaviours of ASIY) for the detection
ol ASD.

We first examined group differences in the trajectories of brain
gromwth rate (Fig. 1). The growth rate of the total brain volame (TBV) did
net diffier between groups from 6 1o 12 months of age. However, pair-
wise comparisons at 24 manths showed large effect sizes for HR-ASD
compated o LR and HR-ASD compared 1o HR-neg. The HR-ASD

We .Fm::po:l:d d brain vol in adol d adults
with ASD over twenly years ago®. Subsequent reports suggested
that brain evergrowth in ASD may be most apparent during early
childhood™™. A study of infants at risk for ASD (33 high-risk and
22 low-risk infants}, seanned from 6 to 24 months of age, found
enlazged beain volume present 2t 12 and 24 months in the 10 infants
that were later diagnosed with autsm 3t 24 months of age or later®
{imean age, 32.5 months).

In the present study, we examined data from a subset of individu-
als from a longitud inal study comprising 318 infants at high fumilial
risk for ASD (HR), of which 70 met clinical best-estimate criteria
for ASD (HR-ASDY) and 248 that did not mseet the criteria for ASD
(HR-eg) at 24 manths of age, and 117 infants at low Famikial risk (LR}
for ASD, who alse did not meet the criteria for ASD at 24 months

group showed a significantly increased TBV growth rate in the second
year enmpured o both the LR and HR-feg groips  Estended Data Table 7).
In addition, the HR-ASD group showed a significantly increased sur-
face area growth rate fram 6 to 12 months of age compared 1o both
the Hi-negand LR dslmups. with the most robust increases ohaerved
in the lefi/right middle occipital gyrus, right cunews and right lingual
gyrusasea (see Fig 7). No group differences were observed in cortical
thickness. We observed a significant correlation between surface area
growth rate of 6-12 moaths and enlargement in TBY o 24 months of
age in all subjects {rye =059, P < 0.001), 25 well as in the combined
HR subgroup {ry =063, P<0.001). Haw means, standard deviations
and effect sizes for the gr of TEV and area are
provided in Extended Dn:ﬂah]: 3. Regional differences in surface arca
change rate (612 manths) were observed in the HR-ASD group (Fig. 2).

ST KIEEREEIRAY %I?Ilf'ﬂl‘ﬁi‘ﬁ‘ﬂ]

Contribution

6 months 12 months
| a—
High Low High

Figure 3 | Visualization of cortical regions with surface area
measurements among the top 40 features contributing to the reduction
in deep learning dimensionality. The cortical regions with surface area
measurements that were among the top 40 features obtained from the
nonlinear deep learning approach are visualized. The top 10 deep learning
features observed include: surface area at 6 months in the right and left
superior frontal gyrus, post-central gyrus, and inferior parietal gyri, and
intracranial volume at 6 months. These features produced by the deep
learning approach are highly consistent with those observed using an
alternative approach (linear sparse learning) (Extended Data Fig. 1). Two
tables listing the top 40 features from the deep learning approach and
sparse learning are provided in Supplementary Tables 2 and 3.
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Figure 2. Proposed Two-stage prediction pipeline that includes a non-linear dimension

reduction step followed by a SVM classification step
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